Treatment of photosensitive epilepsy using coloured glasses

ARNOLD J. WILKINS*, ANN BAKER†, DEVI AMIN‡, SHELagh SMITH†, JULIA BRADFORD‡,
ZENOBIA ZAIWALLA‡, FRANK M. C. BESAG†, COLIN D. BINNIE‡ & DAVID FISH†

*Visual Perception Unit, University of Essex, UK; †National Hospital for Neurology, Queen Square,
London, UK; ‡Maudsley Hospital, Denmark Hill, London, UK; §Addenbrookes Hospital, Hills Road,
Cambridge, UK; ¶Park Hospital for Children, Headington Road, Oxford, UK

Correspondence to: Arnold Wilkins, Visual Perception Unit, Department of Psychology, University of Essex,
Colchester, Essex CO4 3SQ, UK

A recently introduced optometric technique, colorimetry, enables the perceptual effects of ophthalmic tints to be evaluated subjectively, optimized, and then prescribed in tinted spectacles. The new technique is beneficial in reducing visual stress in patients with dyslexia and migraine. We describe an open trial designed to ascertain: (1) whether the colorimetry assessment, as it is now given, is safe for the investigation of photosensitive patients in optometry clinics where colorimetry equipment is most readily available, but where EEG control is not practical; (2) what proportion of patients with photosensitive epilepsy is likely to benefit to the extent already described in individual cases; (3) whether a tint selected by colorimetry could be shown to reduce the incidence of paroxysmal epileptiform EEG activity in response to flicker and patterns, thereby validating the subjective methods and corroborating the reported seizure reduction.

Twenty-four females and nine males (aged 12–43 years) took part. All the patients had suffered visually-provoked seizures, had exhibited a photoparoxysmal response on at least one previous EEG recording, and had received a diagnosis of photosensitive epilepsy. Twenty-two were currently experiencing seizures. A further EEG was recorded in all except seven cases: a routine resting record, followed by hyperventilation. Colorimetry was performed after hyperventilation and before photic stimulation. Twenty-three (70%) reported beneficial effects during colorimetry and were prescribed glasses. There was a preponderance of lenses with a rose or purple colour, in contrast to patients with dyslexia.

Seventeen of the 23 patients were available at follow-up, an average of 2.4 years later. Thirteen (57%) reported benefits, and said they were still using the lenses. In six of the 13 the benefits were pronounced, including a reduction of dizziness from fluorescent lighting, elimination of aura when using computer screens etc. Only in three cases was there a reduction in seizures that could reasonably be attributed to the use of lenses; in two of these cases no medications were prescribed, and in the third the medications remained unchanged for four years, two before and two after the introduction of the glasses. In an additional four cases a reduction in seizures was observed but medication had been changed. There was a modest reduction in EEG photosensitivity with the coloured lenses but also to an equivalent or lesser extent with grey in all of the eight patients examined in this way. One patient had seizures during colorimetry, but the seizures were not accompanied by scalp EEG changes.

© 1999 BEA Trading Ltd

Key words: photosensitive epilepsy; visually-induced seizures; asthenopia; visual stress; precision ophthalmic tints; colorimetry.

INTRODUCTION

When plastic (resin) spectacles lenses became generally available it was possible for the first time to obtain inexpensive glasses tinted to almost any colour. Resin lenses can be coloured simply by dipping them into hot dye. The dye is absorbed into the surface of the resin, colouring the lens independently of its thickness. The advent of this technology has made it possible to select colours that are tailored to suit individual preference. The lenses can have a very wide range of spectral transmissions.

Although the dyeing techniques were initially used for cosmetic purposes only, it has become apparent that tinted spectacles can offer treatment for perceptual disorders. It has emerged that many people, and particularly those with migraine, report a perceptual distortion of stressful visual stimuli such as text, and
that this distortion can be reduced or eliminated when
the text is illuminated by light of a certain colour, dif-
ferent for each individual.2

A new system enables a therapeutic tint to be se-
lected on an individual basis.1-2 A stressful high con-
trast stimulus (meaningless text) is illuminated by
coloured light in a device called an intuitive colori-
meter. The device uses a patented system of colour
mixture which allows the colour (hue) and depth of colour
(saturation) to be varied independently and continu-
ously, without any associated change in brightness (lu-
minance). While the luminance remains constant and
at a suitable level, effects of small changes in colour
on perceptual distortion and visual discomfort can be
assessed rapidly. One advantage of the colorimeter is
that assessment can be made whilst the eyes remain
colour adapted. The adaptation helps to ensure that the
colour chosen is as close as possible to the optimal tint
for spectacles.

When an appropriate colour setting in the col-
orimeter has been obtained, the setting is precisely
matched by a particular combination of standardized
trial lenses. The lenses have smooth spectral trans-
mision (to reduce the influence of the illuminating
source, metamerism). Any chromaticity can therefore
be obtained by a lens combination that itself has a
smooth spectral transmission. The combination that
matches the colorimeter setting is worn by the pa-
tient when viewing both text and natural scenes
and the colour refined, if necessary, by adding or subtrac-
ting trial lenses. The combination of trial lenses finally
selected constitutes a tint 'prescription'. The prescrip-
tion is sent to a dyeing company and used to guide the
dyeing of matching spectacle lenses.

A double-masked study in children with percep-
tual distortion or asthenopia during reading has com-
pared spectacles having the appropriate optimal colour
with others having a sub-optimal colour. The opti-
mal and sub-optimal colours were selected in the col-
orimeter: the optimal colour reduced or eliminated
perceptual distortions, and the sub-optimal tint was
just sufficiently different to permit distortions. Spec-
tacles matching these colour settings were worn for four
weeks in random order. The occurrence of headaches
was significantly reduced with the optimal, as com-
pared with the sub-optimal pair. Notwithstanding the
difference in symptoms, when forced to choose, pa-
tients were unable to determine which of the two
pairs of spectacles was the optimal pair, confirming
that the mask had been maintained.3 The difference in
colour between the optimal and sub-optimal settings
was small, and averaged only six times the minimum
discriminable colour difference.

A theory of visual stress1 draws together common
features between (1) susceptibility to perceptual dis-
tortion and asthenopia (visual fatigue), (2) photopho-
bia accompanying migraine, and (3) the light sensi-
tivity shown in photosensitive epilepsy. According to
this theory, the perceptual distortions are a manifesta-
tion of a hyper-excitability of cells in the visual sys-
tem, localized in the case of photophobia and more
widespread in the case of photosensitive epilepsy.
Success in treating the photophobia that accompa-
nies reading difficulty using coloured filters, raises the
question as to whether patients with photosensitive
epilepsy might benefit from specifically and individu-
ally tinted coloured spectacles.

Carterette and Symmes5 were the first to suggest a
significant effect of colour on epileptic photosensitiv-
ity. Two of their patients were free of seizures with-
out medication using blue glasses that absorbed long-
wavelength light. There have been several subsequent
reviews in the literature, including those by Newmark
and Penny,4 and by Harding and Jeavons.2 The most
recent report is by Takahashi and Tsukahara.8

The effect of colour on the photoparoxysmal EEG
response to intermittent photic stimulation has re-
ceived considerable study, but its relevance in the
present context is unclear. The effect remains contro-
versial8,9, although it is generally agreed to be slight
and perhaps idiosyncratic.7 The use of blue glasses for
the treatment of photosensitive epilepsy was prompt-
ed by the early findings of a greater sensitivity to red
intermittent light. This sensitivity has now been at-
ttributed to a reduction of retinal inhibition in response
to deep red light9, a finding of limited relevance to
the use of coloured glasses in treatment. Furthermore
many patients are sensitive not only to intermittent
light, but also to patterns which occur in the every-
day world. The effect of colour on pattern sensitivity
has received little investigation. It is known that con-
tours that differ only in colour and not in brightness
are not usually epileptogenic, but the effects of overall
changes in colour have not been studied4.

The following study was an open trial to assess the
potential for the use of the new subjective tinting meth-
ods in the treatment of photosensitive epilepsy. It dif-
ers from previous studies in so far as each patient was
allowed to select a tint individually so as to reduce
perceptual distortion and visual discomfort. Some of
the glasses absorbed long-wavelength light, some had
quite different spectral absorbencies.

The study had the following objectives. (1) To de-
termine whether the colorimetry assessment, as it is
now given, is safe for the investigation of photosens-
sitive patients in optometry clinics where colorimetry
equipment is most readily available, but where EEG
control is not practical. (2) To determine whether the
success already observed in individual cases of photo-
sensitive epilepsy1 could be repeated in a large group,
and, if so, in what proportion of patients. (3) To dis-
cover whether a tint selected by colorimetry could be
shown to reduce the incidence of paroxysmal epileptiform EEG activity in response to flicker and patterns, thereby validating the subjective methods and corroborating the reported seizure reduction.

The assessment procedures used were the same as those previously employed for patients with reading difficulties and those with migraine. Most of the assessments were conducted under EEG control as a precaution. If coloured glasses were prescribed, they were provided in addition to more conventional therapy. If refractive correction was worn, a pair of coloured glasses incorporating this correction was supplied. No restrictions were placed on antiepileptic medication or other aspects of normal clinical management.

MATERIALS AND METHODS

Subjects

Patients with photosensitive epilepsy were recruited from Epilepsy Clinics at the National Hospital for Nervous Diseases, and the Maudsley Hospital, London. Ethical committee approval was obtained. A few patients were also initially examined at the Park Hospital for Children, Oxford, and Addenbrookes Hospital, Cambridge. All the patients had suffered visually-provoked seizures, had exhibited a photoconvulsive response on at least one previous EEG recording, and had received a diagnosis of photosensitive epilepsy. Thirty-three patients took part, 24 females and nine males. The mean age was 21 years (range 12–43 years). At the time of initial examination, 22 patients continued to have seizures.

Procedure

An EEG was recorded during the colorimeter examination in 26 of the 33 cases, preceded by a routine resting record, and hyperventilation and followed by photic stimulation. For the colorimeter examination the patient was seated in front of the intuitive colorimeter and viewed a page of text in the colorimeter, illuminated with coloured light. The text comprised random letter strings, arranged to resemble words in a paragraph of text. Over the course of 5 seconds the saturation of the light was slowly increased from a neutral setting, a white similar to daylight (CIE 1976 $u' = 0.21; v' = 0.75$) to one with a moderate strength of colour or saturation (CIE 1976 $h_{uv} \sim 7$). It remained at this setting for 5 seconds before returning to the neutral setting over a similar time period. The patient was asked to judge whether the change in colour had any effect on the perceptual clarity or comfort of the text. The process was repeated until 12 different hues had been assessed. The hues systematically sampled perceptual space (they differed in hue angle, h_{uv}, by about 30°). If any of these hues improved the clarity or comfort of the text the saturation was optimized for each, usually by asking the patient to adjust the saturation using a wheel. The hues were then compared, typically by forced choice between two alternatives successively presented by the examiner. At the best hue, saturation was re-optimized and small deviations in hue ($h_{uv} \sim 10^°$) were then successively compared. Saturation and hue were alternately optimized until a stable chromaticity had been selected.

This chromaticity was then matched with a combination of tinted lenses. The lenses were held in front of an aperture through which could be seen a spectrally even surface illuminated with ‘white’ fluorescent light (CIE type F3). The combination of lenses was adjusted until the appearance of the aperture through the lenses matched that of a second aperture. The second aperture revealed a similar surface within the colorimeter illuminated with light of the chosen colour. The match in the colour appearance of the two apertures was ratified by the patient. The patient was then invited to wear the lenses and compare them with neutral lenses of similar photopic transmission.

Twelve patients were examined before the colorimeter was commercially available using prototype instruments and techniques that differed slightly from those described above.

Where clinically appropriate, the patient’s sensitivity to intermittent photic stimulation (Grass stimulator) and patterns was compared with the coloured and neutral lints. (The patterns were gratings with square-wave luminance profile, contrast 0.8, space-averaged luminance about 100 cd.m$^{-2}$, circular in outline and centrally fixated, radius selected to suit patient’s sensitivity.) Coloured spectacles were supplied for patients who described a subjective benefit from the tint. Patients were followed up, usually after a minimum of one year.

RESULTS

Thirty-three patients with photosensitive epilepsy were assessed. Twenty-three (70%) reported beneficial effects during colorimetry and were prescribed glasses. Seventeen of these patients were available at follow-up, an average of 2.4 years later (standard deviation 1.7 years). Thirteen (57%) reported benefits, and said they were still using the lenses. In six of the 13 the benefits were pronounced, including a reduction of dizziness from fluorescent lighting, and elimination of aura when using computer screens. Only in three cases was there a reduction in seizures that could reasonably be attributed to the use of lenses; in two of these cases
no medications were prescribed, and in the third the medications remained unchanged for 4 years, two before and two after the introduction of the lenses, see Fig. 1.

The colour of the lenses is shown by points in the chromaticity diagram in Fig. 2a, with different symbols for patients, according to the benefit derived. As can be seen, there is a preponderance of lenses with a rose, blue or purple colour: few lenses were green, a colour commonly chosen by children with reading difficulty, as shown in Fig. 2b.

In eight patients it was possible to assess EEG sensitivity to patterns or to intermittent photic stimulation with and without lenses. In all eight cases there was a modest reduction in photosensitivity with the coloured lenses but also to an equivalent or lesser extent with the grey. Only in one case was the reduction clearly greater with the coloured than that with the grey. In another patient lenses of the selected colour were compared with other coloured lenses and the selected colour reduced the photosensitivity frequency range by the greatest amount. In one patient EEG discharges occurred during colorimetry when uncomfortable colours were shown, but in all the remaining patients colorimetry did not alter the record.

One patient had an attack during colorimetry, and she did so on each of the two occasions. There was an apparent loss of muscle tone, she was unresponsive for a few seconds, and was then briefly disoriented. The attack was not accompanied by ictal electrographic changes in the scalp EEG. It was not clear whether this was a brief complex partial seizure or some type of non-epileptic attack.

DISCUSSION

Patients were given lenses only if they reported subjective beneficial effects. Seventy percent of the patients examined reported benefits and were offered lenses. Thirteen out of 17 patients reported continued use at follow-up. Although the study was an open trial and placebo effects are not controlled, the length of the period of continued use is rather longer than that typically associated with placebo treatments.

Most patients reported beneficial perceptual or somatic effects, and were prepared to suffer the social disadvantages of wearing the glasses. One patient stopped wearing her glasses because they called attention to her epilepsy, with unfortunate social consequences.

It is possible that the patients who failed to find a colour beneficial might nevertheless have benefited from lenses with neutral density, but in this study such lenses were not offered.

The colour most commonly chosen for the lenses was a shade of rose, blue or purple, rather than green. The colour was selected by subjective methods independently of brightness. Previous EEG studies in patients with photosensitive epilepsy have suggested that blue lenses generally provide the most protection. Clearly a blue tint is not universally the most effective at reducing symptoms, although it remains possible that a blue tint offers a greater protection against seizures. It is still to be determined whether the reduction of symptoms of visual stress provides the best guide as to the colour of tint most effective at reducing seizures, although a priori it seems unlikely that tints that reduce visual discomfort and aura will differ from those that reduce seizures.

The proportion of patients who wore photic overlaying glasses who reported beneficial perceptual effects from coloured light is about 70% and therefore larger than that in the general population: for example, about 50% of children report beneficial perceptual effects from coloured overlays.

The following conclusions can be drawn.

(1) The proportion of patients with photosensitive epilepsy who reported beneficial perceptual effects from coloured light is larger than in the general population.

(2) Coloured glasses may provide relief from seizures in some patients with photosensitive epilepsy, including, occasionally, those for whom antiepileptic therapy is not indicated and those for whom such therapy is insufficient.

(3) Although coloured glasses may reduce seizures in relatively few patients, they may have other beneficial effects such as a reduction of symptoms of discomfort. These benefits can be sufficient to encourage patients to wear their spectacles despite continuing seizures.

(4) During colorimetry there was only one patient who suffered an attack that might have been a seizure, suggesting that the likelihood of epileptic seizures during colorimetry assessment is small. The colorimetry assessment appears to be very much less provocative than intermittent photic stimulation or pattern stimulation.

The findings are sufficient to justify a follow-up study in which lenses of the chosen colour are compared with other tints, including grey.
Fig. 1: Incidence of tonic–clonic seizures in a 17-year old girl with photosensitive epilepsy before and after blue glasses were provided. The transmission of the glasses is shown in the inset. There was no change in medication throughout the period shown. The seizure incidence is recorded in consecutive 3-month periods. Sadly the epilepsy deteriorated after the period shown.

Fig. 2: (a) Chromaticities of lenses selected by patients with photosensitive epilepsy using the intuitive colorimeter system. The large points identify the patients who had a particularly good therapeutic response. (b) Chromaticities of lenses selected by the first 1000 patients to use the colorimeter system, for comparison. Most of these patients had reading difficulties.
ACKNOWLEDGEMENTS

This study was supported by the Medical Research Council which supported the first author, by the Epilepsy Research Fund which purchased two intuitive colorimeters, and by Cerium Visual Technologies which provided tinting services free of charge.

DECLARATION OF INTEREST

The rights to the intuitive colorimeter are owned by the Medical Research Council of Great Britain. Under their ‘Awards to Inventors’ scheme the senior author received a proportion of the royalties on the sales of the two colorimeters used in this study; this he has donated to the Epilepsy Research Fund.

REFERENCES